请问焦点三角形面积公式如何推导 谢

来源:互联网 时间:2025-10-31 15:57:22 浏览量:8

椭圆焦点三角形面积公式推导如下:

设P为椭圆上的任意一点P(不与焦点共线)。

∠F2F1P=α,∠F1F2P=β,∠F1PF2=θ。

则有离心率e=sin(α+β)/(sinα+sinβ)。

焦点三角形面积S=b²·tan(θ/2)。

椭圆的焦点三角形性质为:

(1)|PF1|+|PF2|=2a。

(2)4c²=|PF1|²+|PF2|²-2|PF1|·|PF2|·cosθ。

(3)周长=2a+2c。

(4)面积=S=b²·tan(θ/2)(∠F1PF2=θ)。

Copyright © 转乾企业管理-商务网 版权所有 | 黔ICP备2023009682号

免责声明:本站内容仅用于学习参考,信息和图片素材来源于互联网,如内容侵权与违规,请联系我们进行删除,我们将在三个工作日内处理。联系邮箱:303555158#QQ.COM (把#换成@)