高数二重积分利用极坐标求解典型例题

来源:互联网 时间:2025-10-31 10:40:30 浏览量:6

二重积分中dσ就是平面坐标中的面积(在x-y坐标中,dx,dy互相垂直,直接dxdy就是微分面积),然后用极坐标表示就是ρdρdθ,其实理解的就是用极坐标如何求微分面积的

首先一般我们高中学习的极坐标求面积公式是S=1/2·l·r=1/2·r²·α=1/2·ρ²·θ,

微分的时候dσ=ρdρdθ,就是一楼的那个图,ρdθ是微分的弧(两个弧是近似一样的),dρ就微分矩形的高.大概就是这么理解,理解了书上的知识相对就好理解一些了。

上一篇:刚玉包括

下一篇:旅行英文怎么读

Copyright © 转乾企业管理-商务网 版权所有 | 黔ICP备2023009682号

免责声明:本站内容仅用于学习参考,信息和图片素材来源于互联网,如内容侵权与违规,请联系我们进行删除,我们将在三个工作日内处理。联系邮箱:303555158#QQ.COM (把#换成@)