矩阵求导

来源:互联网 时间:2025-11-01 15:39:54 浏览量:3

1、矩阵的微分是函数导数的概念形式推广到矩阵的情形。

2、矩阵微分根据对不同变量的求导,有不同形式。

3、定义一: 设m×n矩阵 A(t)=【amn(t)】 的每个元素aij(t)都是自变量t的可导函数,则称m×n矩阵【δamn(t)/δt】为A(t)关于变量t的导数,记为δA(t)/δt; 定义二:设A为m×n阵,f(A)为矩阵A的数量值函数。

4、若f(A)关于A的任一元素aij的偏导δf/ δaij都存在,则称【δf/δamn】为f(A)关于A=(aij)的导数,记为δf(A)/δA; 定义三:设A为m×n维矩阵型变量,A=(aij),G(A)维A的矩阵值函数(p×q维)即G(A)=【g(A)pq】,其中g(A)ij都为A的数值量函数,且关于A可导,则称【δG/δaij】=△⊙G(△应是倒三角,为[δ/δaij],Hamilton算子矩阵;⊙应是乘号加圈,为Kronecker积); 可以参考矩阵论的相关书籍。

Copyright © 转乾企业管理-商务网 版权所有 | 黔ICP备2023009682号

免责声明:本站内容仅用于学习参考,信息和图片素材来源于互联网,如内容侵权与违规,请联系我们进行删除,我们将在三个工作日内处理。联系邮箱:303555158#QQ.COM (把#换成@)